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Abstract We present in this paper a short survey of some recent interactions between
Nonlinear Analysis and Nonlinear Complementarity. Considering the new relations between
Nonlinear Analysis and Complementarity Theory, put in evidence in this paper, we define
several open research subjects profitable to both domains.
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1 Introduction

The main goal of this paper is to present some new interactions between Nonlinear Analy-
sis and Nonlinear Complementarity. The new interactions will be used to define some open
subjects in the sense to stimulate new developments in Nonlinear Analysis and in Com-
plementarity Theory. The concept of complementarity is synonymous with the concept of
equilibrium, not only in the physical sense, but also int the economical sense [13,15,23].
Essentially, the Complementarity Theory is represented by a wide class of mathematical
models, and it unifies many problems in field such as mathematical programming, game
theory, economics, the study of equilibrium of traffic flows, mechanics, elasticity, the theory
of fluid flow through a semi-permeable membrane, maximizing oil production, the study of
contact with friction, and recently in robotics [11,13,15,18,23].

The first complementarity problem was defined about 41 years ago. Now, the number
of papers published on this subject is much more than 1000. It is well known that Com-
plementarity Theory has two parts: the Linear Complementarity Theory and the Nonlinear
Complementarity Theory. This paper is devoted to Nonlinear Complementarity Theory and
its relation with Nonlinear Analysis. Certainly, new developments on this subject will be
welcomed for both domains.
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2 Preliminaries

We denote by R the real field , by (Rn, 〈·, ·〉) the n-dimensional Euclidean space and by
(H, 〈·, ·〉) an arbitrary Hilbert space. We recall that R+ = {

x ∈ R

∣
∣x ≥ 0

}
. As it is well

known, (Rn, 〈·, ·〉) is an n-dimensional Hilbert space. We denote also a closed convex cone
in a Hilbert space H by K if it is a closed set that satisfies the following conditions:

(1) K + K ⊆ K; and
(2) λK ⊆ K, for any λ ∈ R+.

If in addition K is such that K
⋂
(−K) = {0}, we say that K is a pointed convex cone. If K

is given, its dual is, by definition, K
∗ = {

y ∈ H
∣
∣ 〈y, x〉 ≥ 0, for all x ∈ K

}
. If K is a closed

cone in H , we denote by PK the metric projection onto K (which is well defined), that is, for
any x ∈ H , PK(x) is the unique element in K such that

‖x − PK‖ ≤ ‖x − y‖ , for all y ∈ K.

We suppose known the properties of PK given, for example, in [15] and [11].
Given a closed pointed convex cone K ⊂ H and two mappings f, g : H → H , the

Nonlinear Complementarity Problem defined by f and K is:

NC P( f,K) :
{

find x∗ ∈ K such that

f (x∗) ∈ K
∗ and 〈x∗, f (x∗)〉 = 0,

and the Nonlinear Implicit Complementarity Problem defined by f , g and K is:

N I C P( f, g,K) :
{

find x∗ ∈ H such that

g(x∗) ∈ K, f (x∗) ∈ K
∗ and 〈g(x∗), f (x∗)〉 = 0,

Finally, we denote by (E, ‖·‖) an arbitrary Banach space.

3 Complementarity Theory and its interaction with Nonlinear Analysis

When, in 1990, we decided to write our first book [13] on Nonlinear Complementarity
Problems in infinite dimensional Hilbert spaces, our reason was to show this problem to
mathematicians working in Applied Mathematics and in Fundamental Mathematics, because
Complementarity Theory is interesting and has deep relations with several domains as
Linear Algebra, Functional Analysis, Nonlinear Analysis, the theory of Variational Inequali-
ties, Numerical Analysis, Mathematical Modelling, Economics, Optimization and Engineer-
ing, amongst others. Until now, I have published on this subject the books [11,13,15,18]
and [23].

From the beginning, in the period of 1970–1980, several authors as R.W. Cottle,
S. Karamardian, B.C. Eaves, R. Saigal, amongst others, put in evidence natural relations
between complementarity problems, variational inequalities and fixed point theory [13,15].
After 1985, in several of our papers we put in evidence the fact that the relation between
Nonlinear Complementarity Theory and Fixed Point Theory is in the double sense, i.e. Fixed
Point Theory can be used to solve complementarity problems and conversely, Complemen-
tarity Theory can be used to find new fixed point theorems. The topological degree, which is
the most important mathematical tool used in Nonlinear Analysis, was used in 1972 by
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R. Saigal in some of his papers and, after 1985, the topological degree has been used
by several authors such as C.D. Ha, M.S. Gowda, R. Sznajder and D. Goeleven among
others [15].

In some of our papers published after 1990, we put in evidence the fact that, naturally
nonlinear complementarity problems must be studied by the methods developed in Nonlin-
ear Analysis. In this sense, we used the concept of zero-epi mapping, a refinement of the
concept of topological degree, in the study of nonlinear complementarity problems [14].
P.P. Zabreiko and A. Carbone proved recently that the Skrypnik’s topological degree, which
is a new development of the classical topological degree for mappings satisfying condition
(S)+, has interesting applications to the study of nonlinear complementarity problems, [3,4].
In Nonlinear Analysis it is well known that condition (S)+ introduced by F. Browder [2]
is a good substitute to compactness when this is missing. In 1993, in a joint paper with
S.M. Gowda [24] we introduced the condition (S)1+, which is more general then condi-
tion (S)+, and we have shown that this condition has interesting applications to Nonlinear
Complementarity Theory; other authors considered our condition.

Finally, one of the most important result in Nonlinear Analysis is the Leray-Schauder
Alternative. This alternative has been used exclusively for solving nonlinear differential or
integral equations. Recently, in several of our papers and in our book [16] we proved that the
second part of the Leray-Schauder Alternative has interesting applications to Complementar-
ity Theory. This new interaction between the Leray-Schauder Alternative and Complemen-
tarity Theory can be a good stimulus for new developments in Complementarity Theory and
Nonlinear Analysis. In this paper we will put in evidence new interactions between Nonlinear
Complementarity Theory and Nonlinear Analysis.

4 New solvability theorems for nonlinear equations applicable to Complementarity
Theory

Let (E, ‖·‖)be a Banach space. For any real number r > 0 we denote Br = {
x ∈ E

∣
∣ ‖x‖ ≤ r

}

and Sr = {
x ∈ E

∣
∣ ‖x‖ = r

}
. We will give a new solvability theorem for a general equation

of the form

f (x) = 0, (1)

where f : E → E is a completely continuous mapping, i.e., f is continuous and for any
bounded set D ⊂ E , f (D) is relatively compact. The starting point of our solvability results
is the following classical result.

If f : [−1, 1] → R is a continuous mapping and f (x) · x < 0 for any x ∈ S1 then there
is an element x0 ∈ B1 such that f (x0) = 0.

The extension of this result to the n-dimensional Euclidean space was considered in 1940
by C. Miranda who obtained the following result. Consider in R

n the following sets:

J n = {
(x1, x2, . . . , xn)

∣
∣ |xi | ≤ 1, i = 1, 2, . . . , n

}

J +
i = {

x ∈ J n
∣
∣xi = 1

}
(the nth face), and

J −
i = {

x ∈ J n
∣
∣xi = −1

}
(the opposite face of J +

i ).

Theorem 1 (Miranda) Let f = ( f1, f2, . . . , fn) : J n → R
n be a continuous function. If

for each i ∈ {1, 2, . . . , n} we have fi (x) ≥ 0 for any x ∈ J +
i and fi (x) ≤ 0 for any x ∈ J −

i ,
then there exists x∗ ∈ J n such that f (x∗) = 0.
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Proof The proof of this result appears in [34]. �

We recall that on an arbitrary Banach space (E, ‖·‖), at least two interesting semi-inner-
products can be defined. A semi-inner-product, as introduced by Lumer [33], is a mapping
[·, ·]� : E × E → R such that

(S1) [x + y, z]� = [x, z]� + [y, z]� , for any x, y, z ∈ E,

(S2) [λx, y]� = λ [x, y]� , for any λ ∈ R and any x, y ∈ E,

(S3) [x, x]� > 0 for any x ∈ E, x �= 0,

(S4)
∣
∣[x, y]�

∣
∣2 ≤ [x, x]� · [y, y]� , for any x, y ∈ E .

Any Banach space can be endowed with a semi-inner-product in Lumer’s sense [33]. A
semi-inner-product in Deimling’s sense is defined by

[x, y]d = ‖y‖ lim
t→0+

‖y + t x‖ − ‖y‖
t

, for any x, y ∈ E .

This semi-inner-product is not linear in the first variable, but it is sublinear [21].
Let(E, ‖·‖) be a Banach space and f : E → E a mapping.

Definition 1 (Almost solvability) We say that the equation f (x) = 0 is almost solvable if

there exists r > 0 such that 0 ∈ f (B̄r ).

The almost solvability means that there exists r > 0 such that for any ε > 0 there exists
xε ∈ Br such that ‖ f (xε)‖ < ε (i.e. for any ε > 0 there exists an ε-solution of equation (1).
Obviously, if Eq. 1 is solvable, then it is almost solvable but the converse in not generally
true.

We will consider a mapping F : E × E → R satisfying the following properties

(g1) G(x, x) ≥ 0 for any x ∈ Sr (for a particular r > 0),

(g2) G(λx, y) ≥ λG(x, y) for any λ > 0 and all x, y ∈ Sr .

Example 1

(1) If (H, 〈·, ·〉) is a Hilbert space, we can take G(·, ·) = 〈·, ·〉.
(2) If (E, ‖·‖) is a Banach space, then we can take G(·, ·) = [·, ·]� or G(·, ·) = [·, ·]d .
(3) Let (H, 〈·, ·〉) be a Hilbert space, and E = C ([0, 1], H) and ‖x‖ = supt∈[0,1] ‖x(t)‖

for any x ∈ E . In this case we can take G(x, y) = supt∈[0,1] 〈x(t), y(t)〉 or G(x, y) =
∫ 1

0 〈x(t), y(t)〉 dt .

�

Theorem 2 (Isac-Avramescu) Let (E, ‖·‖) be a Banach space and f : E → E a mapping.
If the following assumptions are satisfied:

(1) f is completely continuous;
(2) there exists a mapping G : E × E → R satisfying (g1) and (g2) for a particular r > 0;

and
(3) G ( f (x), x) < 0 for any x ∈ Sr ,

then the equation f (x) = 0 is almost solvable in Br .
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Proof For the proof, the reader is referred to [20,21]. �

Remark 1

(1) Theorem 2 is valid if assumption (3) is replaced with G ( f (x), x) > 0 for any x ∈ Sr .
(2) If the space is finite dimensional, then the almost solvability implies the solvability.

Theorem 3 (Isac-Avramescu) Let (E, ‖·‖) be a Banach space and f : E → E a completely
continuous mapping. Suppose that G : E × E → R is an inner-product dominated by the
norm ‖·‖ of E i.e., |G(x, y)| ≤ k ‖x‖ ‖y‖ for any x, y ∈ E (where k > 0). Denote by
M = supx∈Br

‖ f (x)‖ for a particular r > 0.

If ‖ f (x)− f (y)‖ ≤ a ‖x − y‖ for any x, y ∈ Br , where a > 0, and G ( f (x), x) ≤ −c,
where c = rk[ar + m], for any x ∈ Sr , then the equation f (x) = 0 has a solution in Br .

Proof For the proof of this result the reader is referred to [21]. �

Now, we give some applications to nonlinear complementarity problems. First, we con-
sider the n-dimensional Euclidean space (Rn, 〈·, ·〉). Let K ⊂ R

n be a closed convex cone and
h : R

n → R
n a mapping. We consider the nonlinear complementarity problem NC P(h,K).

We have the following result.

Theorem 4 Lt K ⊂ R
n be a closed convex cone and h : R

n → R
n a continuous mapping.

If there exist two real numbers α > 0 and r > 0 such that ‖x − αh(x)‖ < r for any x ∈ R
n

with ‖x‖ = r , then the problem NC P(h,K) has a solution x0 with ‖x0‖ ≤ r .

Proof (Sketch) We apply Theorem 2 taking G(x, y) = 〈x, y〉 for any x, y ∈ R
n and f (x) =

PK[x − αh(x)] = x . �

Example 2 If h(x) = βx − g(x), where β > 0 and g : R
n → R

n is a continuous map-
ping with the property that there exists ρ > 0 such that for any x with ‖x‖ > ρ we have

‖g(x)‖ < r0, r0 > 0, then in this case we take α = 1
β

and r > max
{

1
β

r0, ρ
}

. �

Remark 2 In the case of the linear complementarity problem LC P(A, b,Rn+), we can esti-
mate the number r used in Theorem 2 considering the spectrum of the matrix A0 = A + A∗,
where A∗ is the adjoint matrix of A. In this sense, see the method to estimate the radius of
the ball containing all the solutions of the problem LC P(A, b,Rn+), developed in [12].

We note the condition 〈 f (x), x〉 = 〈PK[x − αh(x)] − x, x〉 < 0 used in Theorem 2 or 4,
is equivalent with the following global optimization problem:

{
find the global max of 〈PK[x − αh(x)] − x, x〉
when x ∈ Sr

and if x∗ ∈ Sr is a solution of this program, we must have 〈PK[x∗ − αh(x)] − x∗, x∗〉 < 0.
Now we consider the case of an infinite dimensional Hilbert space. Let (H, 〈·, ·〉) be an infi-
nite dimensional Hilbert space, K ⊂ H a closed convex cone and h : H → H a completely
continuous mapping. In this case, the solvability (or the almost solvability) cannot be studied
by Theorem 2 or 3 because the mapping f (x) = PK[x − αh(x)] − x can not be completely
continuous. However, the implicit complementarity problem I NC P( f, g,K), where f and
g are completely continuous can be studied. In this sense we have the following results �
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Theorem 5 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone and f, g : H →
H two completely continuous mappings. Let G : H × H → R be a mapping satisfying
conditions (g1) and (g2). If there exists r > 0 such that G(PK[x − αh(x)] − x, x) < 0 for
all x ∈ Sr , then the problem I NC P( f, g,K) is almost solvable in Br , that is, for any ε > 0
there exists xε ∈ Br satisfying the inequality

‖PK[g(xε)− f (xε)] − g(xε)‖ < ε.

Proof The proof is based on Theorem 2. �

Theorem 6 If f, g : H → H are completely continuous mappings and the following
assumptions are satisfied:

(1) there exists r > 0 and M > 0 such that 〈g(x), x〉 ≥ M ‖h‖2, for any x ∈ Sr ,
(2) ‖g(x)− f (x)‖ < Mr, for any x ∈ Sr ,

then the problem I NC P( f, g,K) is almost solvable in Br .

Proof This result is a consequence of Theorem 5. �

Remark 3 If we have to solve the problem NC P( f,K) in an infinite dimensional Hilbert
space, we can transform the problem in an implicit complementarity problem of the form
NC P(F,G,K) if f has the form f (x)− T (x), where T : H → H is a completely contin-
uous mapping, taking G(x) = ϕ(x), and F(x) = ϕ(x) − T (ϕ(x)). The solvability of the
problem I NC P(F,G,K) implies the solvability of the problem NC P( f,K). �

If the I NC P( f, g,K) is almost solvable in Br , then for any ε > 0 (eventually very small)
there exist xε ∈ H with ‖xε‖ ≤ r and uε with ‖uε‖ < ε such that

⎧
⎪⎨

⎪⎩

g(xε)+ uε ∈ K

f (xε)+ uε ∈ K
∗ and

〈g(xε)+ uε, f (xε)+ uε〉 = 0.

(2)

The mappings f (·) + uε and g(·) + uε may be considered as small perturbations of
f and g. Considering relation (2) we can say that the almost solvability of the problem
I NC P( f, g,K) means that for any ε > 0 there exist uε with ‖uε‖ < ε such that the
problem I NC P( f (·)+ uε, g(·)+ uε,K) has a solution xε with ‖xε‖ ≤ r .

4.1 Open subjects

Considering the results presented in this section, we define the following open subjects.

(1) New solvability or almost solvability theorems applicable to complementarity problems
are necessary.

(2) Given the problem NC P( f,K), where H is an infinite dimensional Hilbert space,
K ⊂ H is a closed convex cone and f : H → H , we can consider the normal operator
defined by

Nα(x) = f (PK(x))+ α(x − PK(x)), where α > 0 and x is arbitrary in H .
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It is known that Nα(x) = 0 has a solution if and only if the NC P( f,K) has a solution.
The operator Nα was studied for α = 1 in [37,38] and [39]. Because the operator Nα

can not be completely continuous in an infinite dimensional Hilbert space, it would be
useful to find new solvability theorems for the equation Nα(x) = 0.

(3) Some surjectivity theorems for the operator Nα can have interesting applications to the
study of nonlinear complementarity problems.

5 The notion of Exceptional Family of Elements and a general coercivity condition

In the first period of development of Complementarity Theory, the solvability of nonlinear
complementarity problems was studied by the fixed point theory, by some special results
of convex analysis and by K K M type theorems. In some papers the coercivity condition
was also used. After 1992, we considered the idea to find a general coercivity condition
applicable to complementarity problems. Finally, we arrived to find the notion of exceptional
family of elements (EFE) for a continuous function and we used this notion in several papers
[16,22,25,29,40]. About the investigation method based on the notion of EFE, the reader is
referred to [15,18] and [23]. We now recall some notions, results and the concept of EFE.

Let (H, 〈·, ·〉) be a Hilbert space, X ⊂ H a non-empty set and f : H → H a mapping.
We denote by X the closer of X and by tial X the boundary of X . We say that f is compact
on X if f (X) is a relatively compact set. We denote by α the Kuratowski measure of non
compactness (see the definition in [18]). Let K ⊂ H be a closed convex cone. We say that f
is a α-condensing mapping if f is continuous and bounded (i.e. if B ⊂ H is bounded then
f (B) is also bounded), and α( f (B)) < α(B), for all B ⊂ H with α(B) > 0.

We say that f is a completely continuous field if f (x) = x − T (x), for any x ∈ H , where
T : H → H is a completely continuous mapping, and we say that f is an α-condensing
field if T is an α-condensing mapping. We recall the following result.

Theorem 7 (Leray-Schauder Alternative) Let D ⊂ H be a convex set, U a subset open in
D and such that 0 ∈ U. Then each continuous compact mapping f : U → D has at least
one of the following properties:

(1) f has a fixed point,
(2) there is (x∗, λ∗) ∈ ∂U×]0, 1[ such that x∗ = λ∗ f (x∗).

Proof A proof is given in [18]. �

Definition 2 We say that a family of elements {xr }r>0 ⊂ K is and EFE for a continuous
mapping f : H → H with respect to K, if for every real r > 0, there exists a real number
µr > 0 such that the vector ur = µr xr + f (xr ) satisfies the following conditions:

(1) ur ∈ K
∗,

(2) 〈ur , xr 〉 = 0
(3) ‖xr‖ → ∞ as r → ∞.

This notion is justified by the following result due to G. Isac [16].

Theorem 8 (Alternative) Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone
and f : H → H a mapping. If one of the following conditions is satisfied,

123



136 J Glob Optim (2008) 40:129–146

(1) f is a completely continuous field,
(2) f is an α-condensing field,

then there exists either a solution to the problem NC P( f,K) or f has an EFE with respect
to K.

Corollary 1 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed pointed convex cone. If the
function f : H → H is a completely continuous filed, or an α-condensing field without an
EFE, with respect to K, then the problem NC P( f,K) has a solution.

We recall the classical notion of coercivity used in the theory of variational inequalities.
We say that f : H → H is coercive with respect to K, if there is an element x0 ∈ K such
that

lim‖x‖→∞
x∈K

〈 f (x)− f (x0), x − x0〉
‖x − x0‖ = +∞

We can prove that if f is coercive then it is without an EFE. In [18] are presented several
classes of mappings with the property of being without an EFE with respect to convex cones,
but these mappings are not coercive. Consequently, we can say that the property of being
without EFE is a general coercive condition. A particular case, useful for practical problems,
is given by the following condition due to G. Isac.

Definition 3 We say that a mapping f : H → H satisfies condition (θ ) with respect to a
convex cone K ∈ H if there exists a real number ρ > 0 such that for each x ∈ K with
‖x‖ > ρ there exists y ∈ K with ‖y‖ < ‖x‖ such that 〈x − y, f (x)〉 ≥ 0.

Proposition 1 If f : H → H satisfies condition (θ) with respect to K, then f is without
EFE with respect to K.

In several of our papers and in our book [18], we proved that several classes of mappings
used in Complementarity Theory satisfy condition (θ). Because only coercive mappings
satisfy (θ), we can say that condition (θ) is also a kind of coercive condition.

We note that there exists other classes of mappings which are without EFE but which do
not satisfy condition (θ). This is the case of mappings satisfying a feasibility condition.

We recall that the strict dual of K is

K̂∗ = {
y ∈ H

∣
∣ 〈y, x〉 > 0 for all x ∈ K \ {0}}

For some cones, the strict dual can be empty. Any well-based cone [15] has a non empty
strict dual. We say that the problem NC P( f,K) is strictly feasible if there exists x0 ∈ K

such that f (x0) ∈ K̂∗.
We recall that a mapping f : H → H is said to be pseudomonotone with respect to K if

for every x, y ∈ K we have that 〈x − y, f (y)〉 ≥ 0 implies that 〈x − y, f (x)〉 ≥ 0. We have
the following result.

Theorem 9 (Isac-Kalashnikov) Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed well-
based convex cone and f : H → H a mapping. If the problem NC P( f,K) is strictly
feasible then f is without EFE

Proof A proof of this result in given in [25]. �
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Remark 4 There exist other classes of mappings with the property that the feasibility implies
the non existence of EFE. In this sense we cite the quasi-P∗-mappings and the P(τ, α, β)-
mappings defined and studied in [40]. �

We note that the notion of EFE was adapted for complementarity problems defined by set-
valued mappings, for implicit complementarity problems and for variational inequalities. The
following question naturally arises. Under what conditions does the solvability of the prob-
lem NC P( f,K) imply that f is without EFE with respect to K? We now cite an interesting
results in this sense.

Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone and f, g : H → H two
mappings. The following definition is due to G. Isac.

Definition 4 We say that f is asymptotically g-pseudomonotone with respect to K if there
exists a real number ρ < 0 such that for all x, y ∈ K with max {ρ, ‖y‖} < ‖x‖, we have that
〈x − y, g(y)〉 ≥ 0 implies 〈x − y, f (x)〉 ≥ 0

We have the following result.

Theorem 10 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed pointed convex cone and
f, g : H → H two mappings. If f is asymptotically g-pseudomonotone with respect to K

and the problem NC P(g,K) has a solution, then f is without EFE with respect to K.

From Theorem 10 we deduce the following two interesting results, applicable to the study
of equilibrium of integrated economical systems.

Theorem 11 (Transitivity principle) Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed
pointed convex cone and f, g : H → H two mappings. If the following assumptions are
satisfied:

(1) f is a completely continuous field or an α-condensing field;
(2) f is asymptotically g-pseudomonotone with respect to K;
(3) the problem NC P(g,K) has a solution,

then the problem NC P( f,K) has a solution.

Corollary 2 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed pointed convex cone and
f : H → H a completely continuous field or an α-condensing field, if f is pseudomonotone
with respect to K, then the problem NC P( f,K) has a solution if and only if f is without
EFE with respect to K.

Finally, related to the notion of EFE we consider the following problem: Is it possible to find
a necessary and sufficient condition to have that a given function has the property of being
without EFE with respect to a given convex cone? The next results of this section are related
to this problem.

For any r > 0 we denote Kr = {
x ∈ K

∣
∣ ‖x‖ ≤ r

}
.

Definition 5 We say that a family of elements {xr }r>0 ⊂ K is a regular exceptional family
of elements (REFE) for f with respect to K, if for every real number r > 0 there exists a
real number µr > 0 such that the vector ur = µr xr + f (xr ) satisfies the properties:
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(1) ur ∈ K
∗,

(2) 〈ur , xr 〉 = 0,
(3) ‖xr‖ = r .

Definition 6 We say that a mapping f : H → H is REFE-acceptable with respect to K if
either the problem NC P( f,K) has a solution, or the mapping f has a REFE with respect
to K.

Remark 5 Obviously, if f is a REFE-acceptable mapping with respect to K and it is without
REFE, then the problem NC P( f,K) has a solution. �

Theorem 12 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H be a closed convex cone and f :
H → H a mapping such that for any r > 0 the mapping �r = PKr ◦(I − f ) has a fixed
point, where�r is considered from Kr to Kr . Then f is REFE-acceptable with respect to K.

Proof A proof of this result is given in [28]. �

Example 3 In the n-dimensional Euclidean space (Rn, 〈·, ·〉) any continuous mappings is
REFE-acceptable with respect to any closed convex cone. �

Example 4 If (H, 〈·, ·〉) is a Hilbert space and K a convex cone with a compact base then
any continuous mapping is REFE-acceptable with respect to K. �

Example 5 If (H, 〈·, ·〉) is a Hilbert space and K ⊂ H a closed convex cone, then in this
case completely continuous fields and α-condensing fields are REFE-acceptable with respect
to K. �

The reader can find other examples of REFE-acceptable mappings in the book [18] an in our
recent paper [28].

Theorem 13 Let(H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone and f : H → H
a mapping. A necessary and sufficient condition for the mapping f to have the property of
being without REFE with respect to K s the following: there is a ρ > 0 such that for any
x ∈ K with ‖x‖ = ρ at least one of the following conditions hold:

(1) 〈 f (x), x〉 ≥ 0,
(2) there is a y ∈ K such that ρ2 〈 f (x), y〉 < 〈x, y〉 · 〈 f (x), x〉.
Proof A proof of this is result is given in [28]. �

5.1 Open subjects

(1) It is interesting and useful to find new classes of mappings having the property of being
without EFE or REFE.

(2) It is interesting and useful to find new classes of mappings with the property that feasi-
bility implies the non existence of EFE.

(3) It is interesting to find new existence theorems for the problem NC P( f,K) based on
Theorem 13.

(4) It is interesting to find new classes of mappings which are REFE-acceptable with respect
to a general closed convex cone in a Hilbert space.

(5) It is interesting to study deeply the asymptotically g-pseudomonotonicity.

123



J Glob Optim (2008) 40:129–146 139

6 Asymptotic differentiable fields, scalar differentiability and fixed points theorems
on cones applicable to complementarity problems

In this section we present a variant of Krasnoselskii’s fixed point theorem on convex cones
[31]. Our theorem is based on asymptotic and on scalar differentiability and we apply this
theorem to nonlinear complementarity problems. This application can be considered as a
stimulus for new developments in the theory of asymptotic scalar differentiability.

Let (E, ‖·‖) be a Banach space and let [·, ·] be a semi-inner-product in Lumer’s sense as
defined in Sect. 4 of this paper ([·, ·]�). If E is a Hilbert space then in this case we have on E
only one semi-inner-product which is exactly the inner-product given on E . For some results
we need to consider a semi-inner-product [·, ·] on e satisfying the supplementary condition

(S5) [x, λy] = λ [x, y] for any x, y ∈ E and any λ ∈ R.

If the semi-inner-product [·, ·] is given on E we consider the norm defined by ‖x‖S = [x, x]
1
2

for any x ∈ E . If for any x ∈ E , [x, x] = ‖x‖2, we say that the semi-inner-product is compat-
ible with the norm ‖·‖ given on E . The operator i : E \{0} → E \{0} defined by i(x) = x

[x,x]
is called inversion (of pole 0) with respect to [·, ·]. Let A ⊂ E be a subset such that 0 ∈ A
and A \ {0} is an invariant set with respect to i , i.e. i(A \ {0}) = A \ {0}. Let f : A → E be
a mapping. The inversion (of pole 0) with respect to [·, ·] is

I( f )(x) =
{

[x, x] ( f ◦ i)(x), x �= 0,

0, x = 0.

We note that any closed convex cone K ⊂ E is invariant with respect to any semi-inner-
product.

Let ⊂ E be a closed convex cone and f : E → E a mappings. We say that f is positive
if f (K) ⊆ K. We denote by L(E, E) the set of linear bounded mappings from E to E .

Definition 7 (from Krasnoselskii [31]) We say that a nonlinear mapping f : E → E is
asymptotically linear along K if there exists T ∈ L(E, E) such that

lim‖x‖→∞
x∈K

‖ f (x)− T (x)‖
‖x‖ = 0

If the cone K is generating, i.e. E = K − K , then T satisfying Definition 7 is unique and
in this case we say that T is the asymptotic derivative of f along K and we denote T by f ∞

K
.

When K = E , f ∞
K

will be denoted by f∞.
It is known that if f is positive then f ∞

K
is positive and if f is completely continuous with

respect to K, then so is f ∞
K

, [1], [31].
Let G ⊆ E be a set which contains at least one non isolated point, G̃ ⊆ E such that

G ⊆ G̃, f : G̃ → E and x0 a non isolated point of G. The following definition is due to
S.Z. Nemèth [26,27,29,35,36].

Definition 8 The limit

f #,G(x0) = lim inf
x→x0
x∈G

[ f (x)− f (x0), x − x0]

‖x − x0‖2
S
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is called the lower scalar derivative of f at x0 along G, with respect to [·, ·]. Replacing
lim inf by lim sup in the above, we obtain the upper scalar derivative denoted by f #,G(x0).

Definition 9 We say that T ∈ L(E, E) is a scalar asymptotic derivative of f along the cone
K ⊂ E , with respect to [·, ·] if

lim inf‖x‖→∞
x∈K

[ f (x)− T (x), x]

‖x‖2
S

≤ 0

We denote T by f ′
S,K(∞).

We cite the following results proved in [29].

Proposition 2 If T is a scalar asymptotic derivative of f with respect to [·, ·] (along K),
then for any c > 0 the mapping T +cI i also a scalar asymptotic derivative of f with respect
to [·, ·].
Proposition 3 If the semi-inner-product [·, ·] is compatible with the norm ‖·‖ of E and if
T ∈ L(E, E) is the asymptotic derivative of f with respect to K, then T is a scalar asymptotic
derivative of f .

Now, we give some ideas about the computation of asymptotic and of scalar derivatives.

(1) Generally, we can compute the asymptotic derivative using the definition and the partic-
ularity of the operator. This is the case of integral operators (Hammerstein or Urysohn
integral operators). For this case, the reader is referred to [30] and [31].

(2) Some results obtained in the theory of Hyers-Ulam stability of mappings can be used
do compute the asymptotic derivative of a mapping. We cite only a recent result in this
sense. Let � : R+ → R+ be a function satisfying the properties
(a) limt→∞ �(t)

t = 0;
(b) �(st) ≤ �(s)�(t), for any s, t ∈ R+;
(c) �(t) < t , for all t > 1.
And let F(�) be the family of all such functions �, and let P(�) be the convex cone
generated by F(�).

Theorem 14 (Isac) Let f : E → E be a continuous mapping and � ∈ P(�) such
that � = ∑m

i=1 ai�i , ai > 0 and �i ∈ F(�) for any i . If f is �-additive, i.e.
there exists θ > 0 such that ‖ f (x + y)− f (x)− f (y)‖ ≤ θ [� (‖x‖)+� (‖y‖)] for
any x, y ∈ E, and if f (S) is bounded, where S = {

x ∈ E
∣
∣ ‖x‖ = 1

}
, then f has an

asymptotic derivative f∞ (along E) and f∞(x) = limn→∞ f (2n x)
2n , for any x ∈ E.

Proof A proof of this result is given in [17]. �

The scalar derivative offers us also a possibility to decide if a nonlinear mapping is
scalarly asymptotic differentiable. In this sense we cite only the following results
proved in [29].

Theorem 15 (Isac-Németh) If the semi-inner product [·, ·] is compatible with the norm
‖·‖ of E, then T ∈ Ł(E, E) is a scalar asymptotic derivative of f with respect to [·, ·]
along a closed convex cone K ∈ E, if and only if the upper scalar derivative of h in
0 is non-positive, i.e., h #(0) ≤ 0, where h = I( f − T ◦ j) and j : K → E is the
embedding of K in E.
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Theorem 16 (Isac-Németh) If the semi-inner product [·, ·] is compatible with the norm
‖·‖ and I( f ) #(0) < +∞, then f is scalarly asymptotic differentiable with respect to
[·, ·] and T = I( f ) #(0) · I , is a scalar asymptotic derivative of f with respect to [·, ·],
where I : E → E is the identity operator.

Now, we give some fixed point theorems with respect to a convex cone, applicable to com-
plementarity problems. First, we recall the Krasnoselskii fixed point theorem, with respect
to a convex cone.

Theorem 17 (Krasnoselskii) Let (E, ‖·‖) be a Banach space, K ⊂ E a generating closed
pointed convex cone, and f : K → K a completely continuous mapping. If f is asymptoti-
cally differentiable and f ∞

K
is its asymptotic derivative with r( f ∞

K
) < 1 (where r(·) is the

spectral radius), then f has a fixed point.

Proof A proof of this result is given in [1] and [31]. �

Let (H, 〈·, ·〉) be a Hilbert space and K ⊂ H a closed convex cone.

Definition 10 We say that f : K → K is scalarly compact if for any sequence {x}n∈N ⊂ K,
weakly convergent to an element x∗ ∈ K, there exists a subsequence

{
xnk

}
k∈N

such that

lim sup
K→∞

〈
xnk − x∗, f (xnk

〉 ≤ 0.

Remark 6 Any completely continuous mapping is scalarly compact. �

Our fixed point theorem with respect to a convex cone is the following. We denote by ≤
(K*)

the ordering defined by K
∗, i.e. h1, h2 : K → K, h1 ≤

(K*)

h2 means hi (x) ≤ h2(x) for any

x ∈ K.

Theorem 18 (Isac) Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a pointed closed convex cone
and f : K → K a mapping. If the following assumptions are satisfied:

(1) f is demi-continuous,
(2) f is scalarly compact,
(3) there exists a scalar asymptotic derivable mapping f0 : K → E such that f ≤

(K*)

f0 and
∥
∥ f0 S,K(∞)

∥
∥ < 1,

then f has a fixed point in K.

Proof For a proof of this result the reader is referred to [17]. �

Remark 7 We note that Theorem 18 is more flexible for applications then Theorem 17. �

Corollary 3 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a pointed closed convex cone and
f : K → K a mapping. If the following assumptions are satisfied
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(1) f is demi-continuous,
(2) f is scalarly compact,
(3) f has a scalar asymptotic derivative fS,K (∞) and

∥
∥ fS,K (∞)

∥
∥ < 1,

then f has a fixed point in K.

Theorem 19 (Isac-Németh) Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a generating closed
pointed convex cone and f : K → K a mapping. If the following assumptions are satisfied

(1) f is demi-continuous,
(2) f is scalarly compact,
(3) there exists a mapping f0 : K → H, such that f ≤

(K*)

f0 and I( f0)(0) < 1,

then f has a fixed point in K.

Proof We can show (see [29]) that f0 has a scalar asymptotic derivative f0 S,K(∞) with∥
∥ f0 S,K(∞)

∥
∥ < 1 �

We now give an application of Theorem 18 to complementarity problems.

Theorem 20 Let (H, 〈·, ·〉) be a Hilbert space and K ⊂ H a pointed closed convex cone and
f : H → h a mapping such that there exist two continuous mappings A, T : H → H such
that f (x) = x − A(x)− T (x), for any x ∈ H. If the following assumptions are satisfied:

(1) lim‖x‖→∞
x∈K

‖A(x)‖
‖x‖ = 0,

(2) T (K) ⊆ K (i.e. T is positive),
(3) T has an asymptotic derivative T ∞

K
along the cone K,

(4)
∥
∥T ∞

K

∥
∥ < 1,

(5) PK[A(x)+ T (x)] is scalarly compact,

then the problem NC P( f,K) has a solution.

Proof (Sketch only) We consider the mapping� : K → K defined by�(x) = PK[x − f (x)].
Because T ∞

K
(K) ⊆ K we can show that T ∞

K
is also the asymptotic derivative of the mapping

� and the assumptions of Theorem 18 are satisfied. We apply Theorem 18 and we obtain that
� has a fixed point, which implies that the problem NC P( f,K) has a solution. For more
details about this proof, the reader is referred to [17]. �

Remark 8 We note that Theorem 19 has also interesting applications to complementarity
theory. �

6.1 Open subjects

From the point of view of applications of Complementarity Theory to Economics and espe-
cially to Engineering, a very important subject is to find for complementarity problems
existence theorems for nontrivial solutions. Before we define our opens subject we recall the
following classical result given for Hilbert spaces.

Theorem 21 (Krasnoselskii) Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a normal closed
convex cone and f : H → H a nonlinear completely continuous mapping such that f (H) ⊆
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K and f (0) = 0. Suppose that f has a Fréchet derivative f ′(0) at 0 and an asymptotic
derivative f ∞

K
(both derivatives taken with respect to K). If the following assumptions are

verified:

(1) f ∞
K

has no eigenvalue λ � 1,
(2) f ′(0) has no positive eigenvector with corresponding eigenvalue λ0 > 1,

then f has a non-zero fixed point in K.

Remark 9 We note that Theorem 21 is valid for k-set contractions with 0 ≤ k < 1 [9].

�

Open subjects:

(1) It is interesting to know if Theorem 21 is valid replacing the Fréchet derivative by a
directional derivative along the cone K. If this fact is true we can obtain an interesting
existence theorem for nontrivial solutions for nonlinear complementarity problems.

(2) It seems to be interesting to apply Theorem 18 to differential or integral equations.

7 Quasi-bounded operators and complementarity problems depending of parameters

The notion of quasi-bounded operator is due to A. Granas [10]. This notion has been used
in fixed point theory but never systematically in complementarity theory. First, we recall this
notion.

Definition 11 Let (E, ‖·‖) and (F, ‖·‖) be Banach spaces and f : E → F a mapping. We
say that f is quasi-bounded if

lim sup
‖x‖→∞

‖ f (x)‖
‖x‖ = inf sup

ρ>0, ‖x‖≥ρ
‖ f (x)‖

‖x‖ < +∞.

Remark 10 We can show that f : E → F is quasi-bounded if and only if there exist ρ > 0
and a constant M > 0 such that ‖ f (x)‖ ≤ M ‖x‖ for all x with ‖x‖ ≥ ρ. �

Definition 12 If f : E → F is quasi-bounded, then the number

‖ f ‖qb := lim sup
‖x‖→∞

‖ f (x)‖
‖x‖

is called the quasi-norm of f .

Remark 11 If T : E → F is a bounded linear operator then T is quasi-bounded and we can
prove that ‖T ‖qb = ‖T ‖ = sup

‖x‖=1
‖T (x)‖. �

The quasi-norm of a quasi-bounded operator has the following properties:

(1) If f : E → E is quasi-bounded then λ f is quasi-bounded and we have ‖λ f ‖qb =
|λ| ‖ f ‖qb for any λ ∈ R.

(2) If f1, f2 : E → F are quasi-bounded, then f1 + f2 is quasi-bounded and we have that
‖ f1 + f2‖qb ≤ ‖ f1‖qb + ‖ f2‖qb.
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(3) If f : E → F is quasi-bounded and g : F → G is linear and bounded, then g ◦ f is
quasi-bounded.

Example 6

(1) If f : E → F is a mapping such that there exist M0 > 0 and M1 ≥ 0 with the property
that ‖ f (x)‖ ≤ M0 ‖x‖ + M1, for any x ∈ E , then f is quasi-bounded.

(2) If f : E → F is a mapping such that there exist ρ∗, M∗ > 0 and ϕ : R+ → R+ with
limt→+∞ ϕ(t)

t < +∞ and ‖ f (x)‖ ≤ M∗ ‖x‖ + ϕ(‖x‖) for any x ∈ E , with ‖x‖ ≥ ρ∗,
then f is quasi-bounded. (This class of mappings contains the ϕ-bounded operators
studied in nonlinear spectral analysis)

(3) If f : E → F has an asymptotic derivative, in the sense that there exists S ∈ L(E, F)
such that lim‖x‖→∞ ‖ f (x)−S(x)‖

‖x‖ = 0, (equivalently: f∞ = S), then f is quasi-bounded
and ‖ f ‖qb = ‖ f∞‖ = ‖S‖.

(4) If f is ψ-additive with ψ ∈ P(ψ) and f : E → E is a mapping such that f (B(0, 1))
is bounded, then f is quasi-bounded.

�

Remark 12 Because any asymptotically derivable operator is quasi-bounded we have inter-
esting applications of quasi-bounded operators to the study of complementarity problems
defined by integral operators and depending of parameters. �

Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone ant T, T1, T2 : H → H
mappings. We consider the mappings:

(1) fρ(x) = ρx − T (x), for all x ∈ H and ρ > 0, (ρ ∈ R),
(2) fρ,λ(x) = ρx − T1(x)− λT2(x), for all x ∈ H and λ > 0, ρ > 0 with λ, ρ ∈ R,

and the complementarity problems NC P( fρ,K) and NC P( fρ,λ,K).

We say that ρ > 0 is an eigenvalue for the problem NC P( fρ,K) if NC P( fρ,K) has
a solution x∗ �= 0. Similarly, for a given ρ > 0 we say that λ > 0 is an eigenvalue for
NC P( fρ,λ,K) if NC P( fρ,λ,K) has a solution x∗ �= 0. We have the following results.

Theorem 22 If T : H → H is quasi-bounded, completely continuous operator such that
‖T ‖qb < ρ, then the problem NC P( fρ,K) has a solution.

Proof The proof is strongly based on the classical Leray-Schauder alternative and it is given
in [19]. �

Corollary 4 If T : H → H is a quasi-bounded completely continuous operator and if
T (0) �= 0, then any real number ρ > ‖T ‖qb is an eigenvalue for the problem NC P( fρ,K).
In particular, if T is asymptotically derivable and completely continuous, then any ρ > ‖T∞‖
is an eigenvalue for the problem NC P( fρ,K) if T (0) �= 0

Theorem 23 IF T1 : h → H is a linear completely continuous operator and T2 : H → H
is quasi-bounded and completely continuous, with the property that T2(0) �= 0, then for a
given ρ > 0 there exists λ0 > 0 such that any λ ∈]0, λ0[ is an eigenvalue to the problem
NC P( fρ,λ,K).

Proof The proof is based on Theorem 22 and it is given in [19]. �
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7.1 Open subjects

(1) The results presented in the is section support the idea of necessity to study deeply the
class of quasi-bounded operators and to put in evidence new examples of quasi-bounded
operators, especially related to practical problems.

(2) It is known that complementarity problems with eigenvalues are considered in elasticity
and in the study of bifurcation problems for variational inequalities defined on cones
(see the book by Vy Khoi Le and Klaus Schmitt [32])[5–8].

(3) A complementarity problem used in the study of equilibrium post-critic of this elastic
plates is the complementarity problem defined by the Von-Karman operator, i.e. the
operator of the from f (x) = x − λL(x) + T (x), where L is a linear completely con-
tinuous, self-adjoint operator, defined on a Hilbert space, λ ∈ R+ and T is a nonlinear
completely continuous operator, homogeneous of degree three [5–8].

References

1. Amann, H.: Lecture on some fixed point theorems. IMPA, Rio de Janeiro (1974)
2. Brouder, F.E.: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 9, 1–39 (1983)
3. Carbone, A., Zabreiko, P.: Some remakrs on complementarity problems in a Hilbert space. J. Anal.

Appl. 21, 1005–1014 (2002)
4. Carbone, A., Zabreiko, P.: Explicit and implicit complementarity problems in Hilbert spaces. J. Anal.

Appl. 22, 31–41 (2003)
5. Ciarlet, P.G., Rabier, P.: Lecture notes in mathematics. In: Les é9quations de Van Kármán, vol. 826.

Springer-Verlag (1980)
6. Cimetière, A.: Flambement unilaté9ral d’une plaque reposant sans frottement sur un support élastique

tridimensionnel. C. R. Acad. Sc. Paris, Série B 290, 337–340 (1980)
7. Cimetière, A.: Un problème de flambement unilaté9ral en théorie des plaques. J. Mécanique 19(1), 183–

202 (1980)
8. Cimetière, A.: Mé9thode de Liapounov-Schmidt et branche de bifurcation pour une classe d’iné9quations

variationnelles. C. R. Acad. Sc. Paris, Série I 300(15), 565–568 (1985)
9. Edmunds, E., Potter, J., Stuart, C.: Non-compact positive operators. Proc. R. Soc. Lond. 328, 67–81 (1972)

10. Granas, A.: The theory of compact vector fields and some of its applications to topology of functional
spaces (I). Fozparawy Mat. 30, 1–93 (1962)

11. Hyers, D., Isac, G., Rassias, T.M.: Topics in Nonlinear Analysis and Applications. World Scientific, Sin-
gapore (1997)

12. Isac, G.: The numerical range theory and boundedness of solutions of the complementarity problem. J.
Math. Anal. Appl. 143(1), 235–251 (1989)

13. Isac, G.: Complementarity Problems. In: Lecture Notes in Mathematics, vol. 1528. Springer-Verlag (1992)
14. Isac, G.: (0, k)-Epi mappings. Applications to Complementarity Theory. Math. Comput. Model. 32, 1433–

1444 (2000)
15. Isac, G.: Topological methods in Complementarity theory. Kluwer Academics Publishers (2000)
16. Isac, G.: Leray-Schauder type alternatives and the solvability of complimentarity problems. Topol. Meth-

ods Nonlinear Anal. 18, 191–204 (2001)
17. Isac, G.: Asymptotic derivable fields and nonlinear complementarity problems. Reprint (2006)
18. Isac, G.: Leray-Schauder Type Alternatives, Complementary Problems and Variational Inequalities.

Springer (2006)
19. Isac, G.: Quasi-bounded mappings and complementarity problems depending of parameters. Reprint

(2006)
20. Isac, G., Avramescu, C.: Some general solvability theorems. Appl. Math. Lett. 17, 977–983 (2004)
21. Isac, G., Avramescu, C.: Some solvability theorems for nonlinear equations. Fixed Point Theory 5(1),

71–80 (2004)
22. Isac, G., Bulavsky, V., Kalashnikov, V.: Exceptional families topological degree and complementarity

problems. J. Global Opt. 10, 207–225 (1997)
23. Isac, G., Bulavsky, V., Kalashnikov, V.: Complementarity, Equilibrium, Efficiency and Economics. Klu-

wer Academic Publishers (2002)

123



146 J Glob Optim (2008) 40:129–146

24. Isac, G., Gowda, M.: Operators of class (S)1+:Altman’s condition and the complementarity problem. J.
Fac. Sci. Univ. Tokyo, Sec IA 40(1) (1993)

25. Isac, G., Kalashnikov, V.: Exceptional families of elements, leray-Schauder alternative, pseudomonotone
operators and complementarity. J. Opt. Theory Appl. 109(1), 19–83 (2001)

26. Isac, G., Németh, S.: Scalar derivatives and scalar asymptotic derivatives: properties and some applica-
tions. J. Math. Anal. Appl. 278, 149–170 (2003)

27. Isac, G., Németh, S.: Scalar derivatives and scalar asymptotic derivatives. an Altman type fixed point
theorem on convex cones and some applications. J. Math. Anal. Appl. 290, 452–468 (2004)

28. Isac, G., Németh, S.: REFE-acceptable mappings and necessary and sufficient conditions for the non
existence of the regular exceptional family of elements. J. Opt. Theory Appl. (forthcoming)

29. Isac, G., Németh, S.: Scalar derivatives and scalar asymptotic derivatives. Theory and applications.
Springer (forthcoming)

30. Krasnoselskii, M.: Topological Methods in the Theory of Nonlinear Integral Equations (in Russian). Gos-
tekhizdat, Moscow (1956)

31. Krasnoselskii, M.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)
32. Le, V.K., Schmitt, K.: Global Bifurcation in Variational Inequalities. Springer (1997)
33. Lumer, G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100, 29–43 (1961)
34. Miranda, C.: Un’ osservazione su un teorema di Brower. Bull. U. M. I. 3(2), 5–7 (1940–1941)
35. Németh, S.Z.: A scalar derivative for vector functions. Riv. Matematica Pura Appl. 10, 7–24 (1992)
36. Németh, S.Z.: Scalar derivatives and spectral theory. Matematica 35(1), 49–58 (1993)
37. Robinson, S.: Homeomorphism conditions for normal maps of polyhedra, Optimization and Nonlinear

analysis. Longman, London
38. Robinson, S.: Normal maps induced by linear transformations. Math. Oper. Res 17(3), 691–714 (1992)
39. Robinson, S.: Nonsingularity ans symmetry for linear normal maps. Math. Programming 62, 415–

425 (1993)
40. Zhao, Y., Isac, G.: Quasi -P∗ and P(τ, α, β)-maps, exceptional families of elements and complementarity

problems. J. Opt. Theory Appl. 105(1), 213–231 (2000)

123


	Nonlinear analysis and complementarity theory
	Abstract
	Introduction
	Preliminaries
	Complementarity Theory and its interaction with Nonlinear Analysis
	New solvability theorems for nonlinear equations applicable to Complementarity Theory
	Open subjects
	The notion of Exceptional Family of Elements and a general coercivity condition
	Open subjects
	Asymptotic differentiable fields, scalar differentiability and fixed points theorems on cones applicable to complementarity problems
	Open subjects
	Quasi-bounded operators and complementarity problems depending of parameters
	Open subjects


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


